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REDUCING ALIASING IN THE WIGNER DISTRIBUTION
USING IMPLICIT SPLINE INTERPOLATION

by

G.F, Boudreaux—Bartels and T.W. Parks
I. Introduction

The Wigner Distribution (WD),

Wx(t.m) = f x(t + 1/2)1‘(t - t/2)e—jmdr (1)

-

of a continuous time signal x(t) is a bilinear signal transformation
that is useful for analyzing signals whose frequency content changes
with time. The WD originated in the field of quantum mechanics, and has
been used to characterize the time—varying signals found in optical com-
munications, speech waveforms and radar/sonar patterms. The ambiguity

function of =x(t) is related to Wx(t.m) via two Fourier transforms.

Wigner distributions exhibit several desirable properties: 1) the auto

WD of a real or complex signal x(t) is real, 2) Wx(t.m) has the same

time and frequency support as x(t), and 3) shifts in time or frequency
on x(t) produce corresponding shifts in Wx(t.w). In addition, the aver-—
age frequency of Wx(t,w), i.e. fixed to, is equal to the instantaneous
frequency, whereas the average time of Wx(t.mo) is equal to the group
delay of the signal, Integration of Wx(t.m) with respect to the fre-—
quency (time) variable for a fixed time to (frequency mo) yields the

instantaneous power (energy density) of the signal at to(wo). The

jntegral over the entire (t,0) plane is equal to the signal emnergy.



Wx(t.m) can be viewed as the Fourier Transform of

g (t,7) = x(t + o/2)x (t - ©/2) , (2)

the product of appropriately shifted versions of x(t) and its complex

*

conjugate, x (t). When the Fourier integral cannot be calculated in
closed form, digital signal processing techniques are often invoked to
obtain numerical approximations. A typical signal processing approach

is to sample either gx(t,t) or x(t), window the resulting sequence, and

then compute its discrete Fourier Transform (DFT). However, x{(t) must
be sampled at twice the Nyquist rate [2] to avoid aliasing errors when

calculating Wx(t,m). In many signal processing situations where under-

sampling has occurred, anti—aliasing digital filters can be designed to
minimize aliasing errors [4,5]., An alternate approach is to view the
sequence of samples as part of a spline function approximation to the
continuous-time signal x(t). The Fourier integral of a spline approxi-
mation can be easily calculated using certain predetermined weighting
functions, called diminishing factors [6], to reduce aliasing errors.
In many cases, the spline function analysis method produces a smaller
approximation error to the Fourier integral than the DFT of the sequence

of samples does.

It is the purpose of this research to extend the theory of implicit
spline approximations of the Fourier integral to similar approximations
of the Wigner distribution, We determine the two—dimensional general-—
ized diminishing operators mneeded to correct the aliasing errors gen—
erated when only an undersampled version of x(t) is available to approx-—

imate Wx(t.m). This implicit interpolation process "fills—in" the



sampled signal, x(nT), between the signal samples, increases the effec—
tive sampling rate, and hence reduces the effects of aliasing when cal-
culating the Wigner distribution, The spline approximation can be cal-
culated very efficiently if one takes advantage of the special structure

and symmetry of Wigner distributions,
II. Theoretical Developments

Classen et al [2] and Chan [3] have studied the effects of sampling

and windowing x(t) in order to approximate Wx(t,m). If x(t) is bandlim-
ited to 0 i.e.
jot

Xw) = [ x(t) ¢t =0, lol > 0_=2xf_, - (3)
S s s

then Wx(t,w) is also bandlimited to © . The DFT can be used to calcu-
lated (3) on a discrete grid of frequency points if x(t) is finite

length and sampled every T 5%- seconds, However, twice as many sam-
s

ples of x(t), is needed to avoid aliasing errors when calculating

Wx(t.m) on the same frequency grid, i.e. T S_z%’.
s

If the signal x(t) has been sampled at the Nyquist rate, then one

can avoid aliasing errors in approximating Wx(t,w) by interpolating the

sampled sequence. However, in addition to the <computational expense
involved in interpolation algorithms, doubling the number of samples
more than doubles the number of calculations needed to approximate

Wx(t,m). An alternate approach to minimizing the effects of aliasing is

to view the undersampled sequence as the equally spaced knots of a



spline approximation to the continuous—time signal x(t).

Let the discrete signal {X(n)} represent the uniformly spaced sam—

ples of the continuous time signal, x(t). That is,

;(n) = x(nT) » D= 406 "2, _1, O, 1. 2; sse 8 (4)

The Fourier transform of this sampled sequence is

e~32nfnT

) = ¥ X . (5)
n = —xo

Furthermore, assume x(t) is the first-order spline approximation of x(t)
that interpolates the samples, x(nT). The Fourier integral of the

spline approximation

-j2nft

X6 = [ (e dt = X(f) (6)

is easy to compute [6] since

sinnfT]Z

X(f) = X(f) [ fT

(7

is the product of the Fourier transform (5) of the signal samples, and

the “diminishing factor” [(SinﬂfT)/ﬂfT]z. This diminishing factor is

predetermined according to the order of the spline approximation and

weights the perjodic spectrum of the undersampled sequence, ;(n), to

produce the unaliased spectrum of the continuous time spline approxima-

tion, =x(t). This technique is said to be "implicit’” since the spline
A

function, x(t) is mnever actually computed, Note that since

[(sinnfT)/nfT]2 is the Fourier transform of the triangular pulse



t
L lTl It] ¢ T (8)

p(t) = 0 ’ otherwise

the spline, or piecewise linear, approximation, ;(t). can be written as
the convolution of the discrete sequence {x(n)} and the triangular

interpolating function, p(t):

-] -]

x(t) = ¥ X(a)p(t - aol) = ) x(aD)p(t - ol (9)

n=—m n::»—m

In order to apply these results to Wigner distributions, 1let

W (t,o) = [ &t +w/F (t - w/2)e Iar 2 W _(t,0) (10)
x —®

be the WD of the spline approximation, x(t). Plugging (9) into (10) we

obtain

W(te) = ¥ ¥ x(iDx @D¥ (¢t - 2410 (11)
X j=—o pr=—w P
where Wp(t,m) is the WD of p(t).
Evaluating (11) at t = nT, we find
WLw = ¥ % xla+ DT [ - ;rre 0™ Ty B, (12)
A P 2

x i=—® -

Since Wp[t,m] =0, ¥ [t] > T, (12) reduces to



1 © :
W,aLw = Y (3 Z(a+ Diln-q - e 19T

x Q=1 i=-=

Ix

{e’j"’qup[qr/z.mn (13)

Equation (13) is similar in form to (7) since the expression in the

first set of brackets is merely the discrete cross Wigner distribution

[2] of the undersampled sequences x(n) and x(n - q). Equation (13)
could be calculated by appropriately weighting, or diminishing, three
cross Wigner distributions. However, a much more efficient method can
be obtained by taking advantage of the special symmetry that results

when one computes the DFT, with respect to n, of WA(nT,m).
x

ITI, Implementation

Define the convolution sequence (for fixzed mo)

® -jw iT “jus(n - i)T
()= ¥ (Zide O )Ea- e O )
) !
0 j=—=
S | | —ijZiT jwonT
= ¥ X(i)x(n - i)e e (14)
iz
Note that,

)

0

hw (2n) = W;(nT,w (15)

0

is the discrete WD of the samples X(n) evaluated at the frequency, 0

Let



H (z) = E h (n)z ©
“0 n=—o 90

be the z—-transform of L (n). Combining (13-14), we obtain
0

o1
¥ (oT,0) = 2 h (2n - q)¥W_[q T/2,w] .
A =1 [0} P
x q

If we define the z—transform

Q(Z.MO) = E WA(nT,wO)z_n

n=—w X

and insert (16-17) into (18), we obtain

1

[l o

,(z'(l) ) =
0 i<o Yo

1 - .
2 ( E g (21/2e Jnx)zq/Ze Jﬂlq]w Iq T/Z.wO]
=1 P

(16)

(17)

(18)

(19)

Furthermore, if we assume that I(n) is finite length, N, and also assume

(without loss of generality) that x(n) is causal, then the DFT can be

used to evaluate (16) on a set of 2N discrete mnormalized frequency

points, i.e.

27 2n
i 2N-1 e
H (e ) _ Y b (a)e
0 =
W )
= k 0% -k _O
=XGNt Y 20X Gar T Y

where X(f) is the length 2N DFT of the undersampled sequence,

9o is one of the discrete frequency points wy = 0, +

(20)

and

27
L INT



i.f%%ﬂ. ses o Similarly, (19) can be computed on a NxN grid of pormal-

ized frequency points by noting that

pruoy 1 135 1 42
N©2 1 2N° —jni 2NY —jni 2
(e ,N—’Tlm =3 z Hy (¢ e ) _2 e e qu[q T/z,ﬁ]
i=0 NT® g=1
1
1 5k + 2m— Ni~* -k + 2m — Ni
=3 iz A —=T G 1)
t
27 i 2n 2n
x {Wp(O.EEm) + 2(-1) °°S(§§k)wp[T/2'ﬁTm]} (21)

since Wp(t.m) = WP(—t,w) for p(t) real and symmetric. Thus, the 1length

~ 2n 2n
2N DFT of x(n) and the length N vectors WP(O.ﬁim) and WP[T/2,§fm] need

only be computed once and stored in memory., Then for each m = 0, 1,
2n
j=—=k
th J2N° 21
sees N = 1, them column #(e ,ﬁim), k=0,1, ..., N-1 and the

length N inverse DFT,

2n 27
N1 = i=Lxn
2n r 1 2N 21 N (22)
W(aT,xom) = & 2 (e Bl

k=0

are computed using Fast Fourier Transform (FFT) techniques to effi-

ciently obtain the spline approximation of the Wigner Distribution.
IV. Examples

The length N = 41 equal-ripple finite impulse response in Figure 1

was designed using the Remez Exchange algorithm [7]. Its frequency
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response, shown in Figure 2 was designed with a unity passband from

FP = 0.0 to FP = 0,15, The stopband extends from normalized freguency
1 2

FS = 0.2 to Fs = 0,5, The passband and stopband errors were equally
1 2

weighted. Note that the impulse response in Figure 1 was sampled more
than twice as fast as required by the Nyquist <criterion im order to
avoid aliasing errors when calculating its discrete Wigner distribution
shown in Figure 3. The WD shown in Figure 4 jis that of the impulse
response in Figuore 1 decimated by a factor of 2. Even though the

reduced sampling rate satisfies the Nyquist criteriom, it is mnot fast

enough, i.,e. it does npot meet the requirement that T g_zi-; to avoid
s

aliasing errors in the WD. Finally, the WD of the spline approximation
of the decimated impulse response is shown in Figure 5. Note that the
effects of aliasing have been removed. The first order spline, or
piecewise—linear, approximation did very well approximating the low fre-
quencies and only moderately well approximating the high frequencies, as
would be expected. Higher order splines can be used to obtain better

approximations,
V. Conclusions

Implicit spline interpolation of a sampled sequence has been used
to approximate the Wigner distribution and reduce the effects of alias-—
ing errors that occur when a signal is undersampled. Recall that sig-
nals must normally be sampled at twice the Nyquist rate in order to
avoid aliasing when calculating its WD. The implicit approximation
technique is an efficient alternative to oversampling or explicitly

interpolating a given sampled signal. The symmetries resulting in the
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double frequency plane inm (21) can be utilized to compute both the
discrete Wigner distribution and the spline approximation of the WD very

efficiently,
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Figure Captions

Figure 1,

Figure 2,

Figure 3.

Figure 4.

Figure 5.

Impulse response of a length N = 41 equal-ripple lowpass

filter designed with unity passband from

co}
|

= 0.20 to FP = 0,15 and stopband FS = 0.20 and

1 2 1

ry
I

0.5. The sampling interval, T, is

assumed to be equal to 1.0.

Frequency response of a length N = 41 equal-ripple
lowpass filter designed with unity passband from

F. =0.0 to F. = 0.15 and
Py P,

= 0.20 to FS = 0.5.
1 2

stopband ranging from FS

Time (n) vs, frequency (w) plot of the Wigner
distribution (WD) of the impulse response shown in

Figure 1. (Sampling interval T = 1.0)

Time (n) vs. frequency (w) plot of the WD of the
decimated lowpass impulse response. (Sampling interval

T =2.0)

Time (n) vs. frequency (w) plot of the WD of the
first-order spline approximation using the decimated
lowpass impulse response sequence as the equally spaced

spline knots. (Sampling interval T = 2.,0),
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